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Introduction

Several deterministic methods comaonly used in Artifical

Intelligence have been applied to develop problea-solving programs, or

error-diagnostic systems. These methods have successfully diagnosed

many erroneous rules of operation in arithmetic, algebra, and some

science domains. The results of such error analyses have contributed to

our current understanding of human thinking and reasoning.

These approaches, however, lack taking the variability of response

errors into account, and they also depend on a specific aodel of problem

solving. Therefore, they often cannot diagnose responses affected by

random mrrors (sometimes called "slips") or produced by innovative thinking

that is not taken into account by the current models. It is very difficult

to develop a computer prograa whose underlying algorithms for calving a

problem relpresents a wide range of individual differences. Yet, when these

diagnostic systeas are used in educational practice, they must be capable

of evaluating any responses on test- items, inconsistent perforaances as

well as those yielded by creative thinking. Therefore, we nead a model

that is capable of diagnosing non-systematic cognitive errors and is also

capable of evaluating non-conventional problem-solving activities.

Tatsuoka and her associates (Tatsuoka, 1985, 1984a1 Tatsuoka & Linn,

1983) Tatsuoka k Tatsuoka, 1983, 1982) have developed such a model called

rule space and have successfully applied it to diagnose misconceptions

possessed by students in signed-number and fraction arithaetic.

The model maps all response patterns into a set of ordered pairs,

the latent ability variable 8 and one of the IRT based caution indices (4)

introduced by Tatsuoka (1984a). However, the approach used '%.n their

model lacks, somehow, a sound statistical foundation in expressing

5 BEST COPY AVAILABLE



2

random errors when a specific rule is applied for solving a problem.

The simulation study by Tatsuoka and Baillie (1982) showed that

the response patterns yielded by not-perfect-applications of a specific

erroneous rule of operation in a procedural domain form a cluster around the

rule. Moreover, they found empirically that the two random variables,

8 and 4 obtained from those response patterns in the cluster follow a

multivariate normal distribution. This cluster around a rule is called

a "bug distribution" hereafter. The theoretical foundation of this

empirical evidence will be discussed in this study. First, a brief

description of the probabilistic model introduced in Tatsuoka (1985)

will be given. Then the connection of each "bug distribution" to the model

will be discussed in the conjunction with the theory of statistical pattern

classification and recognition.

Distribution of Responses around an Erroneous Rule

The responses around a particular rule of operation in a procedural

domain which are produced by not-perftztly-consistent applications of the

rule to the test items form a cluster. They include responses which

deviate, in various degrees of remoteness, from the response generated

by the rule. When these discrepancies are observed, they are considered as

response errors. These response errors are called "slips" by cognitive

scientists (Brown & VanLohn, 1980). The properties of such responses

around a given erroneous rule will be investigated in this section.

First, the probability of having a "slip" on item J (3 m1121...0)

is assumed to be the same valuel p for all items and it will be called

"slip probability" in this paper. Let us denote an arbitrary rule for which the

total score is r by Rule R and let the corresponding response pattern bet

6
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(I) R si

Xi

x2

xn

, xi x2 .., x xr I, and xr+) Is ... * xn O.

The response patterns existing one slip away from Rule R are of two

kindsi a slip of "one to zero" occurring atISJSrand "zero to one" at

r ( j S n. The number of response patterns having one slip is therefore

(;)(n -or) +
and the probability of having one slip on items

Ju1,...0 is given by (r) pl (I-p)r-I (n-0 r) p0 (1...p)n-r +

(r0

r
) 11

I

0 (i_p)r (n-r) pl (i_p)n-r-1
if the probability p is the same

for all items, Jll...,n. Therefore the following equation (2) is obtained'

(2) Prob (xj - I for some jll...,r or xj + I for some Jr+1,...0) is

Prob (having a slip on an item) ((r)(n-r) + (r)(n-r)) 131()_p)n-1
I 0 0 I '

Similarly, the probability of having two slips on the items is given

by Equation (3) as followst

(3) Prob (having two slips on the items) (TOT + (i)(7) +

(r0 )(n-2 r)} ,12 (i_p)n-2
'

In general, the probability of having k slips on the items is given byt

7

3
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(4) Prob (having k slips on the items)

0(
kE i+k2 k

(r )(n-r )4k(i_p)n-k .
= k2

The generating function of the distribution of frequmncies up to k slips

will be given by Equation (5) as follows'

(5) Prob (having a slips) = E (Es
I

ts
2
.s(r

st s2
) (n-rOp

s
(1-p)

n-s

ssk

Since the coefficient term inside the braces equals ("), Equation (5)

will be simply a binomial distribution, given by Equation (6).

(6) E Prob (having s slips) E (n) ps(i_p)n-s

s<k s

Therefore, a cluster around Rule R which consists of response patterns

including various numbers of slips (not-perfectly-consistent application of

Rule R) has a frequency distribution of a binomial form with the equal slip

probability p for the items. One weakness in Equation (6) is that the

value of p is not known and it is very unlikely that the value of p is

constant over the test items. If we assume each item has an unique slip

probability, then the binomial distribution expressed by Equation (6) will

be a compound binomial distribution. Equation (7) is the generating

function of the compound binomial distribution.

k

(7) E prob (having s slips) le E A (pi + qi)
s<k s.Sk

BEST COPY AVAILABLE
8



5

Before an approximation of the slip probabilities pi is discussed, the

rule-space concept will be briefly introduced in the next section.

A Brief Summary of the Probabilistic modal Rule Space

One of the purposes of the model; the rule space, is to interpret

semantically the relationships among various erroneous rules and the right

rule, and compare the characteristic of each rule to the right rule or

other rules. An analogy for the underlying motivation of seeking a norm-

referenced characteristic of "bug behavior" may be found in the theory and

practice of norm-referenced tests. This starts by selecting the right rule

as a norm and tnen comparing the other erroneous rules to the

characteristic of the norm. By doing so, the psychometric behavior of

"bugs" as compared with the right rule, understanding why and how various

misconceptions are related and transformed from one to another will be

explained more clearly than by Just describing the list of bugs.

The rule space model begins by mapping all possible binary response

patterns into a vector space of ((8, 4)), where 8 is the latent ability

variable in Item Response Theory (IRT) and 4 (or 4(x0)) is one of the IRT

based caution indices (Tatsuoka, 1984a; Tatsuoka t Linn, 1983). The mapping

function f(x) is expressed as an inner product of two residual vectors,

P(8) - x and P(8) - T(8) where Pj(8), j1l...0 are the one- or two-parameter

logistic-model probabilities, x is a binary response vector and T(8) is the

mean vector of the logistic probabilities. f(x) is a linear mapping

function between x and 4 at a given level of 8, and the response patterns
-

having the same sufficient statistics for the maximum likelihood estimate 8

of 8 are dispersed into different locations on the line of 8 8. For

example, on a 100-item test, there are 4950 different response patterns

BEST COPY AVAILABLE
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having :)id total score of 2. The 4's for the 4950 binary patterns will be

distributed between 4min and ;sax, where 4min is obtained fro, the pattern

having 1 for the two easiest items and zeros elsewhere, and gmax is from

the pattern hmving I for the two most difficult items. f(x) has the

n

expectation zero and varitnce JAI Pj(0)0j(0)(Pj(0) - T(0))2

(Tatsuoka, 1985). Since the expectation of the random variable xj(Jx1.111.n)

is Pj(0), the expectation of a vector x is P(8) whose Jth component

is Pj(0). The vector P(0) will be mapped to zero as shown in (S), thus the

pattern corresponds to (0,0) in the rule space.

(8) f(P(0)) = 0

As for an erroneous rule R, the response vector R given by (1) will be

n

mapped onto (0R1 f(RIOR)), where the 4 value is il1(Pi(0) - Ri)(Pi(0) - T(8)),

and is given by (9). That is,

r n

(9) f(R) x - .1
l

Di(OR)(Pj(OR) - TO
Jur+R)

+ E
J1

p.(00(Pi(OR) - TOR)).
im

Similarly, all the response vectors resulting from several slips

around rule R will be mapped into the vicinity of (8R, f(R)) in the

rule space and form a cluster (called the cluster around R hereafter).

Figure 1 shows computer-simulated examples of such clusters done on the

PLATO system.

Insert Figure 1 about here

10

BEST COPY AVAILABLE



Group 1

Group 8

1 1 1 1 1 1 8

1 2 3

Figure 1: Two Clusters of Groups 1 and 8 with Two Slips. n=631
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8

The two variablen 8 and f(x) are mutually uncorlelated so their

covariance matrix has a dimgonal fore as follows;

(10)

-. A

var(8) 0

0 var(f(x))

A

111(0) 0
A A A

0 ZPi(0)(23(0)(Pi(0) '' T(8))2

where 1(8) is the inforuation function of the test and is given by

Eaj2Pj(0)(2j(8) where the aj (J11...0) are item discriminating powers.

Let us map all response patterns of the test, including clusters

around varioas nil's into the Cartesian product space of 8 and f(x), where

(11) f(x) (P(8), P(8) T(8)) - (x, P(8) - T(8))

n

or K(8) - ,I
il

x-(Pj(8) - T(8)),
Iii

In particular, Rule R itself will to mapped as

R x 4 (4,4T) 1

where f(R) is given by Equation (9). The variance of the cluster around R

will be expressed by using the slip probability of item 3, pj as follows;

(12) Var(the cluster around R) E pjqj(Pj(80-T(8R))2.

The quantities pj and qj are associated with Rule R as well as with item j,

and their values are unknown. However, if the ordered pair (OR, 4R)

in the rule space falls close to the 8 axis, then pj and qj ma, be approximated

by the logistic probability Pi(OR) and its complement (2.08R) 1 - Pj(8R),

BEST COPY AVAILABLE. 12



9

respectively, without too much loss of accuracy. If pj and qj are thus

approximated, then the variance of Equation (12) will be the same as the

variance of the mapping function f(x), that is

(13) Ver(4 in the cluster around R) = E Pj(e)Qj($)(Pj(8) - T(8))2

The variance of 8 in any cluster, on the other hand, is given by the

reciprocal 1/1(8) of the information function, which can be computed as

(14) Var(8 in the cluster around R) = 1/1(8R)

1/E a2j Pj(8R)Qp8R)

where aj = 1 for the one-parameter logistic model.

The above two variances, along with the fact that 4 and 8 are

uncorrelated, plus the reasonable assumption that they have a bivariate

normal distribution, allow us to construct any desired percent ellipse

around each rule point R. The upshot is that if all erroneous rules

(and the correct one) were to be mapped into the rule space along with

their neighboring response patterns reprementing random slips from them,

the resulting topography would be something like what is seen in

Figure 2. That is, the population of points would exhibit modal densities

at many rule points that each forms the center of an enveloping ellipse

with the density of points getting rarer as we depart farther from the

center in any direction. Furthermore, the major and minor axes of these

13



10

Insert Figure 2 about here

ellipses would -- by virtu* of the uncorrelatedness of g and 8 -- be

parallel to the vertical (4) and horizontal (8) reference axes of the rule

space, respectively.

Recalling that for any given percentage ellipse, the lengths of

the major and minor diameters are fixed multiples of the respective

standard deviations

n

CJE!
.1 J

P.(8)0.(8)(1).J (8) - T(8))23112 and I('i)-
1/2

R

we may assert that the set of ellipses gives a complete characterization of

the rule space. By this is meant that, once these ellipses are given, any

response-pattern point can be classified as most likely being a random slip

from one or another of the erroneous rules (or the correct one). We have

only to determine, for a suitable percent value, which one of the several

ellipses uniquely includes the given point.

Operational Classification Scheme

The geometrics scheme outlined above for classifying any given

response-pattern point as being a "perturbation" from one or another of the

rule points has a certain intuitive appeal (especially to those with

high spatial ability!). However, it is obviou%ly difficult if not

infeasible to put it into practice. We, therefore, now describe the algebraic

equivalent of the foregoing geometric clarification- decision rule, which is

none other than the well-known minieum-D2 rule, where D2 is Mthalanobis'

generalized squared-distance (Fukunaga, 1972) Tatsuoka, 1971). Then the

BEST COPY AVAILABLE 14
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e

Figure 2: Fifteen Ellipses Representing Fifteen Error Types Randomly
Chosen From Forty Sets of Ellipses
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12

Bayles' decision rule for minimum error will be introduced.

Without loss of generality, we may suppose that a given response-

pattern point x has to be classified as representing a random slip from

one of two rule points RI and R2. Let Y be a point in the rule space

corresponding to x, X =

from each of the two rule points is

. The Mahalanobis distance of X

(15) D2

j

D2. r I X - R. 3' E-1 C
J

- R ] 0E1,2)

where RI

will be,

E
"

at

A

1

f(R1)
and R2 r

1/1(;) 0

0 var(f(x))

, and the variance-covariance matrix

The decision rule is, of course, to classify x as a perturbation from

RI if qi, < Dii2 and otherwise as a perturbation from R2. However,

the decision based on the Mahalanobis distances, Dx2 and Dx2 does

not provide error probabilities of misclassificaton. The next section will

discuss them.

BEST COPY AVAILABLE 16
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Suppose R1 and R2 are two clusters of points corresponding to Rules

A
1 and 2, respectively. Let Y be a vector (8, 4) corresponding to an observed

response pattern x, and 4 be the standardized value of f(x), IRT-based

caution index. Then the variance-covariance matrix E will be

E
tv

fit

A

1 /1(8)

0

0

1 ]

A decision rule based on probabilities may be summarized as follows:

(16) If Prob(R1 I Y) > Prob (R2 I Y) then Y E Ri and

if Prob(R1 I Y) < Prob (R2 I 1) then y e R2 .

These posterior probabilities can be obtained from prior probabilities,

Prob(R1) and Prob(R2), and the conditional density function p(Y I Ri),

i1,2 as follows!

p(y I Ri) Prob(Ri)
(17) Prob(Ri I Y)

BEST COPY AVAILABLE

p(i)

1.7



14

Therefore, the decision rule can be expressed as follows'

(18) If p(Y I R1)Prob(R1) > p(Y I R2)Prob(R2) then Y e RI

Otherwise! Y e R2 .

This rule will be rewritten by using the likelihood ratio LAY)!

(19) If t(Y) .

p(Y I RI)
>

Prob(R2)

p(Y I R2) Prob(R1)

Otherwise! Y e R2 .

, then Y e Ri .

Sometimes, it is convenient to take the negative log of the likelihood

ratio in Expression (19), and rewrite it as Expression (20).

(20) If h(Y) . -In L(Y) = -1n(p(Y IRO) + lntptY I R2))

< In ( Prob(R1) / Prob(R2) ] then belongs to Ri .

However, the decision rule (20) does not lead to a perfect classification.

As Overall (1972) states (p. 330)

"Statistical classification decisions, like clinical diagnostic
decisions, are only probabilistically correct. The clinician
realizei this when he lists a secondary diagnosis. The
statistician recoggizes it more explicitly when he is able
to assign a probability estimate to each classfication
alternative."

The probability of error is the probability of Y to be assigned

to the wrong group, Ri.

BEST COPY AVAILABLE
18



15

Let us denott rosterior density function by P(Ri I y), prior density

function of Ri by P(Ri) and let ri and r2 be the regions such that if

E ri then P(R1 I Y) > P(R2 I Y) and

if Y E r2 then P(R1 I Y) < P(R2 I Y) .

The probability of error is given by the following equation(

(21) E z Prob(Y E r2 I R1) P(R1) + Prob(Y E ri I R2) P(R2) .

Let us denote the probability of Y belonging to r2 when Y is from R1 by

&I, then

El z Prob(Y E r2 I R1) p(Y I Rl)dY,
r2

Similarly, the probability of y belonging to r1 when y is from R2,

E2 will be

E2 * Prob(Y E r1 I R2) . ;Hy R2)dy,

ri

Then expression (21) can be rewritten by E = CIP(RI) + E2P(R2),

or more precisely

(22) & z P(R1) p(Y I ROdY + P(R2) I p(Y I R2) dy .

r2 " ri

BEST COPY AVAILABLE
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That is, the total probability of errors is a weighted sum of the

misclassification of samples from R1 and R2 into R2 and R1, respectively.

The integration of the conditional density function is necessary to get

the error probability E. The dimensionality of the conditional density

function is often more than one, while the density function p(it I Ri) of the

likelihood ratio is one dimensional, so it is sometimes convenient to integrate

the latter (Fukunaga, 1972). Hence, Equations (23) and (24) are used to

obtain the error probabilities, El and e21

P(R2)/P(111)
(23) Ei * p(LIR1)dt

0

(24) C2- I
p(R2)/p(R0

p(LIR2)dL

If the density function p(Y I Ri) is normal with expectations MI and

covariance matrices li, the decision rule is summarized by the following

statements'

(25) If h(Y) = -In L(Y)

1

*
i

2 (1 111)' 11-1 (1 MI) K 1'12)1 12-1(1 112)

+ 2
iin 1

inIE I < P(R1) y e R1

1E21 > P(R2) 6 R2

BEST COPY AVAILABLE
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If El = E2 = then h(Y) becomes a linear function of Y

and the decision rule has the following form if Y follows a normal distribution:

1 1

(26) h(Y) = 2 (Y - M1)1 E -1 (Y -MI) - 2 (Y - M2)1 E -1 (Y - M2)
/V IV Al Si AI PA PA PI PA Al

then,

1

. 11. «ti - Worly - y'rl(il - M2) + Wirl - t1 1M

O (11 - MI)E-1Y + 10.1iCIMI - *-1M2) j In[P(R1)/P(R2)3 = t.

Y E

R2

The error probability E1 is given by,

(27) El =

in 1

m
f p(h(Y) I R1)dh(Y)
t

- f ( t-n ) .
a

=

co

I

t±fl

a

1/ \121 exp (-q) dZ

where t m in [p(RI) 1 p(R2)3 and Y (.) is the unit normal distribution.

The conditional expectation of the likelihood function h(Y) is given

by (28) and (29),

(28) E(h(Y) I RI) = -..

1

(M2 n)' 1-1 (12 !11) = 11

(29) E(h(Y) I R2 ''''

1

(12 P,I,1)1 (t1,2 !1,1) 2 +4

and, the variance of h(Y) is given by Equation (30):

BEST COPY AVAILABLE
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(30) ai
2

EtCh(Y) - 1102 I Ril

* (112 - 11111E-1(112 - Mi) * 211 .

Similarly, 62 can be obtained by calculating 1 - V( 0
1...t

) , 1.11.1

(31) 62 " I
t

Ip(h(Y) I R2)dh(Y) 4 i '' ( nli ) .

as a

Illustration of the model with an example

A 40-item fraction subtraction test was given to 535 students at a

local junior high school. A computer program adopting a deterministic

strategy for diagnosing erroneous rules of operation in subtracting two

fractions was developed on the PLATO system. The students' performances on

the test were analyzed by the error-diagnostic program and suimarized by

Tatsuoka (1984a). In order to illustrate the rule space model and the

decision rule described in the previous section, two very common erroneous

rules (Tatsuoka, 1984a) are chosen to explain the model.

Rule 8. This rule is applicable to any fraction or mixed number. A

student subtracts the smaller from the larger number in unequal

corresponding parts and keeps corresponding equal parts as is in the

answer. Examples are,

1. 4 4/12 - 2 7/12 2 3/12 2 1/4

2. 7 3/5 - 4/5 a 7 1/5

3. 3/4 - 3/8 a 3/4
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Rule 30, This rule is applicable to the subtraction of mixed numbers

where the first numerator is smaller than the second numerator. A student

reduces the whole-number part of the minuend by one and adds one to the tens

digit of the numerator.

1.

2.

3.

4

3

7

4/12

3/8

3/5

- 2 7/12

- 2 5/6

- 4/5 6

3 14/12

2 13/8 - 2

13/5 - 4/5

- 2 7/12 1

5/6 19/24

2 9/5

7/12

These two rules are applied to 40 items and two sets of responses

are scored by "right or wrong" scoring procedure, The binary score pattern

made by Rule 8 is denoted by R8 and the other made by Rule 30 is denoted by R30

Besides the two rule mentioned above! 38 different error types are

identified by a task analysis. However, these error types do not

necessarily represent microlevels of cognitive processes such as erroneous

rules of operaton. They are somehow, definad more coarsely, like borrowing

e rrors are grouped as a single error type, or the combination of borrowing

and getting the least common multiple of two denominators is counted as

one error type. In other words, 38 binary reponse patterns representing 38

e rror types are obtained.

The 535 students' responses on the 40 items are scored and used for

estimating item parameters aj and bj by the maximum likelihood procedure.

By using these a- and b-values! 8-values associated with the two rules and 38

e rror types are computed. Then corresponding 4-values are calculated,

Thus! 40 points! (00 4k)! 19...140 are plotted in the rule space (Rule 8

is renumbered to 39 and Rule 30 to 40. It is only coincidence that the

number of rules equals the number.
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Table 1

The 40 Centroids Representing 40 different error types in Fraction

Subtraction Tests (N 535, n 40)

Group 8 4 No. of

Items

Group 8 4 No. of

Items

1 -2.69 -.80 1 21 .24 -.89 22

2 -1.22 -.69 4 22 -.22 -1.23 14

3 -.75 -.68 8 23 .62 -1.55 32

4 -.46 .75 10 24 1.04 -.61 38

5 .11 .91 18 25 .75 -.05 34

6 .64 1.74 30 26 -.51 -1.62 10

7 -.',7 1.48 13 27 -.87 -.56 6

8 .40 -.16 25 28 -1.99 1.01 2

9 .60 -.43 31 29 -.19 1.53 12

10 .57 -.24 29 30 -.24 2.74 10

11 .99 .72 37 31 -1.18 1.46 4

12 1.19 .86 39 32 -1.45 .58 4

13 -.60 -1.58 10 33 .64 1.74 30

14 -.44 -2.31 12 34 .57 -.66 31

15 -.18 .67 14 35 .59 -1.39 30

16 -.08 -1.81 16 36 -1.66 -1.96 4

17 .16 -.86 20 37 -.52 -.94 10

18 -.01 -2.12 18 38 -.32 -1.26 14

19 .09 -2.26 20 39 -.41 -2.57 13

20 .29 -1.51 24 40 .17 -2.34 22

*These items will have the score of 11 otherwise the score will be 0.
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Now, two students A and B who used Rules 8 and 30 for a subset o4 40

items are selected. This was possible because their performances are

diagnosed independently by the error-diagnostic system SPFBUS mentioned

in Tatsuoka (1984b). The circles shown in Figure 3 represent A and B. Their

Mahalanobis distances, D2, to the 40 centroids are calculated respectively

and the smallest values of two distances, D2 , are selected to compute

probabilities of errors. Table 2 summarizes the results.

Insert Table 2 & Figure 3 about here

The D2 values of Student A to Sets 40 and 19 are 0.008 and 0.119,

respectively, and both the values Are small enough to Judge that A may be

classified to eithtr of the sets. Since D2 follows thel(2-distribution

with two degrees of freedom ( Tatsuoka, 1971), the null hypotheses that

n2 2
u(A1Set 40) s 0 and D (A1Set 19) n 0 cannot be rejected at, say a .25.

The error probabilities el and e2 are .581, .266, respectively. Therefore,

we conclude A belongs to Set 19 although D (AlSet 40) is smaller than

D(Asset 19). This happened because the prior probability of Prob(Set 40) is

smaller than that of Prob(Set 19), where the threshold value, t, is determined

as follows:

t -Ln C Prob(Set 40) / Prob(Set 19) 3

and Prob(Set k) cc (1/2S) expC -6%040' Ek"1 (81 4k)/2 3 .
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Table 2

Summary of Classification Results of Students A and B

Student A Student B

DA,
n2

D2 .008 .021uA, Set 40 4,, Sot 39

n2 n2
ull, Set 19 .119 uB, Set 14 '135

&I .581 .979

82 .266 .010

11 .088 .040

t -.174 -.613
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Discussion

A new probabilistic model that is capable of measuring cognitive-skill

acquisition, and of diagnosing erroneous rules of operation in a procedural

domain was introduced by Tatsuoka and her associates (Tatsuoka, 19851

Tatsuoka I( Bernie; 1982; Tatsuoka & Tatsuoka, 1782; Tatsuoka, 19831

Tatsuoka, 19040. The ectimIt called rule space, involves two important

components: 1) determination of a set of bug distributions, or in other

words, bug density functions representing clusters around the rules, and 2)

establishment of decision rules for classifying an observed response

pattern into one of the clusters around the rules and computing error

probabilities. If each cluster around a rule can be described by a

bivariate normal distribution of 0 and 4, then application of the

techniques available in the theory of statistical classification and

pattern recognition is fairly straightforward and easy.

This study introduces the fact that the cluster around the rule

consisting of the response patterns resulting from one, two,..., several

slips may from perfect applicaton of the rule indeed fellows a compound

n

binomial distribution with centroid (8R, 4R) and variance jlipjqj, where pj

011...0 is the probability of having a slip from Rule R for item J. The

values of pj and qj are approximated by the logistic probabilities Pj(8R)

and 0.000, jx11...01 in this study instead of estimating them from the

dataset. Plausibility of the approximation of the slip probabilities

associated with each erroneous rule by the logistic function is left as a

future topic of investigation, although the fit with data seems to be good.

28
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The determination of a set of ellipses representing clusters around

the rules can be automatic after all the erroneous rules are discovered.

Many researchers in cognitive science and artificial intelligence have

started constructing error diagnostic systems in various domains in this

decade. Expert teachers usually know their students' errors, as well as

the weaknesses and strengths of each child's knowledge structure. Since

the model does not require a large -scaly computation such as strategies

commonly used in th; air:: of artificml intelligence do, the rule-space

model is helpful in more general areas of research and teaching, and for

those who have microcomputers for testing their hypotheses, validating

their data with probabilistically-sound information, and evaluating their

teaching methods and materials. Moreover, the model can be "intelligent"

in the sense that the researcher can improve and modify the information for

the cluster ellipses as they get more new students whose performances they

can study.

The set of ellipses can represent many things besides erroneous rules.

They can represent specific contents of some domain, usage errors in the

language arts, or processes required in algebra. However, further research

is necessary to Clvelop methods for determining the Jet of ellipses other

than relying on an expert teacher. The method must be efficient and

compatible with the recent theories of human cognition and learning.
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